T Cell States Associated with Response to Checkpoint Blockade in Melanoma

Request Access

Pembrolizumab versus Ipilimumab in Advanced Melanoma.

C. Robert, J. Schachter, G. Long, et al.. (2015). The New England journal of medicine. Cited 5,165 times. https://doi.org/10.1056/NEJMoa1503093

Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma.

J. Larkin, V. Chiarion-Sileni, R. Gonzalez, et al.. (2015). The New England journal of medicine. Cited 4,108 times. https://doi.org/10.1056/NEJMoa1504030

Genomic correlates of response to CTLA-4 blockade in metastatic melanoma

E. V. Van Allen, Diana Miao, B. Schilling, et al.. (2015). Science. Cited 2,521 times. https://doi.org/10.1126/science.aad0095

Smart-seq2 for sensitive full-length transcriptome profiling in single cells

S. Picelli, Åsa K. Björklund, O. Faridani, et al.. (2013). Nature Methods. Cited 2,172 times. https://doi.org/10.1038/nmeth.2639

Molecular signature of CD8+ T cell exhaustion during chronic viral infection.

E. Wherry, S. Ha, S. Kaech, et al.. (2007). Immunity. Cited 2,074 times. https://doi.org/10.1016/J.IMMUNI.2007.09.006

Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy

S. Im, M. Hashimoto, Michael Y. Gerner, et al.. (2016). Nature. Cited 1,687 times. https://doi.org/10.1038/nature19330

T-cell invigoration to tumour burden ratio associated with anti-PD-1 response

Alexander C. Huang, M. Postow, M. Postow, et al.. (2017). Nature. Cited 1,445 times. https://doi.org/10.1038/nature22079

T Cell Factor 1-Expressing Memory-like CD8(+) T Cells Sustain the Immune Response to Chronic Viral Infections.

Daniel T. Utzschneider, M. Charmoy, Vijaykumar Chennupati, et al.. (2016). Immunity. Cited 905 times. https://doi.org/10.1016/j.immuni.2016.07.021

Analysis of Immune Signatures in Longitudinal Tumor Samples Yields Insight into Biomarkers of Response and Mechanisms of Resistance to Immune Checkpoint Blockade.

Pei-Ling Chen, Whijae Roh, A. Reuben, et al.. (2016). Cancer discovery. Cited 845 times. https://doi.org/10.1158/2159-8290.CD-15-1545

Resistance to checkpoint blockade therapy through inactivation of antigen presentation

Moshe Sade-Feldman, Yunxin J. Jiao, Jonathan H. Chen, et al.. (2017). Nature Communications. Cited 818 times. https://doi.org/10.1038/s41467-017-01062-w

Chromatin states define tumor-specific T cell dysfunction and reprogramming

M. Philip, Lauren Fairchild, Liping Sun, et al.. (2017). Nature. Cited 778 times. https://doi.org/10.1038/nature22367

Genomic and Transcriptomic Features of Response to Anti-PD-1 Therapy in Metastatic Melanoma

Willy Hugo, J. Zaretsky, Lu Sun, et al.. (2017). Cell. Cited 699 times. https://doi.org/10.1016/j.cell.2016.02.065

Differentiation and persistence of memory CD8(+) T cells depend on T cell factor 1.

Xinyuan Zhou, Shuyang Yu, Dong-mei Zhao, et al.. (2010). Immunity. Cited 656 times. https://doi.org/10.1016/j.immuni.2010.08.002

Targeting T Cell Co-receptors for Cancer Therapy.

M. Callahan, M. Postow, J. Wolchok. (2016). Immunity. Cited 436 times. https://doi.org/10.1016/j.immuni.2016.04.023

Immune-Related Gene Expression Profiling After PD-1 Blockade in Non-Small Cell Lung Carcinoma, Head and Neck Squamous Cell Carcinoma, and Melanoma.

A. Prat, A. Navarro, L. Paré, et al.. (2017). Cancer research. Cited 358 times. https://doi.org/10.1158/0008-5472.CAN-16-3556

CD39 Expression Defines Cell Exhaustion in Tumor-Infiltrating CD8+ T Cells.

F. Canale, M. C. Ramello, N. Núñez, et al.. (2018). Cancer research. Cited 324 times. https://doi.org/10.1158/0008-5472.CAN-16-2684

Inhibitory Receptors Beyond T Cell Exhaustion

Silvia A. Fuertes Marraco, N. Neubert, G. Verdeil, et al.. (2015). Frontiers in Immunology. Cited 219 times. https://doi.org/10.3389/fimmu.2015.00310
NCPI Dataset Catalog
Feedback & Support
v0.9.0-d9e5747