Simultaneous Trimodal Single Cell Measurement of Transcripts, Epitopes, and Chromatin Accessibility Using TEA-Seq

Request Access

Fast gapped-read alignment with Bowtie 2

Ben Langmead, S. Salzberg. (2012). Nature Methods. Cited 48,549 times. https://doi.org/10.1038/nmeth.1923

fastp: an ultra-fast all-in-one FASTQ preprocessor

Shifu Chen, Yanqing Zhou, Yaru Chen, et al.. (2018). Bioinformatics. Cited 20,526 times. https://doi.org/10.1093/bioinformatics/bty560

Model-based Analysis of ChIP-Seq (MACS)

Yong Zhang, Tao Liu, Clifford A. Meyer, et al.. (2008). Genome Biology. Cited 16,186 times. https://doi.org/10.1186/gb-2008-9-9-r137

Comprehensive Integration of Single-Cell Data

Tim Stuart, Andrew Butler, Paul J. Hoffman, et al.. (2018). Cell. Cited 11,858 times. https://doi.org/10.1101/460147

Dimensionality reduction for visualizing single-cell data using UMAP

E. Becht, Leland McInnes, John Healy, et al.. (2018). Nature Biotechnology. Cited 4,373 times. https://doi.org/10.1038/nbt.4314

Isolation of mononuclear cells and granulocytes from human blood. Isolation of monuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g.

A. Böyum. (1968). Scandinavian journal of clinical and laboratory investigation. Supplementum. Cited 3,980 times.

Software for Computing and Annotating Genomic Ranges

Michael F. Lawrence, W. Huber, Hervé Pagès, et al.. (2013). PLoS Computational Biology. Cited 3,811 times. https://doi.org/10.1371/journal.pcbi.1003118

Large-scale simultaneous measurement of epitopes and transcriptomes in single cells

Marlon Stoeckius, Christoph Hafemeister, William Stephenson, et al.. (2017). Nature methods. Cited 2,099 times. https://doi.org/10.1038/nmeth.4380

An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues

M. Corces, Alexandro E. Trevino, Emily G. Hamilton, et al.. (2017). Nature Methods. Cited 2,003 times. https://doi.org/10.1038/nmeth.4396

Single-cell chromatin accessibility reveals principles of regulatory variation

Jason D. Buenrostro, Beijing Wu, Ulrike Litzenburger, et al.. (2015). Nature. Cited 1,977 times. https://doi.org/10.1038/nature14590

The UCSC Genome Browser Database: update 2006

A. Hinrichs, D. Karolchik, R. Baertsch, et al.. (2005). Nucleic Acids Research. Cited 1,826 times. https://doi.org/10.1093/nar/gkj144

UpSet: Visualization of Intersecting Sets

A. Lex, Nils Gehlenborg, Hendrik Strobelt, et al.. (2014). IEEE Transactions on Visualization and Computer Graphics. Cited 1,768 times. https://doi.org/10.1109/TVCG.2014.2346248

Determination and Inference of Eukaryotic Transcription Factor Sequence Specificity

M. Weirauch, A. Yang, Mihai Albu, et al.. (2014). Cell. Cited 1,656 times. https://doi.org/10.1016/j.cell.2014.08.009

Shared and distinct transcriptomic cell types across neocortical areas

Bosiljka Tasic, Zizhen Yao, Lucas T. Graybuck, et al.. (2018). Nature. Cited 1,512 times. https://doi.org/10.1038/s41586-018-0654-5

Ensembl 2020

Andrew D. Yates, P. Achuthan, Wasiu A. Akanni, et al.. (2019). Nucleic Acids Research. Cited 1,355 times. https://doi.org/10.1093/nar/gkz966

Lineage-specific and single cell chromatin accessibility charts human hematopoiesis and leukemia evolution

M. Corces, Jason D. Buenrostro, Jason D. Buenrostro, et al.. (2016). Nature genetics. Cited 999 times. https://doi.org/10.1038/ng.3646

Massively parallel single-cell chromatin landscapes of human immune cell development and intratumoral T cell exhaustion

Ansuman T. Satpathy, Jeffrey M. Granja, K. Yost, et al.. (2019). Nature Biotechnology. Cited 779 times. https://doi.org/10.1038/s41587-019-0206-z

A Single-Cell Atlas of In Vivo Mammalian Chromatin Accessibility

D. Cusanovich, Andrew J. Hill, Delasa Aghamirzaie, et al.. (2018). Cell. Cited 675 times. https://doi.org/10.1016/j.cell.2018.06.052

From haematopoietic stem cells to complex differentiation landscapes

E. Laurenti, B. Göttgens. (2018). Nature. Cited 675 times. https://doi.org/10.1038/nature25022

scNMT-seq enables joint profiling of chromatin accessibility DNA methylation and transcription in single cells

Stephen J. Clark, R. Argelaguet, Chantriolnt-Andreas Kapourani, et al.. (2018). Nature Communications. Cited 556 times. https://doi.org/10.1038/s41467-018-03149-4

Droplet-based combinatorial indexing for massive-scale single-cell chromatin accessibility

C. Lareau, Fabiana M. Duarte, J. Chew, et al.. (2019). Nature Biotechnology. Cited 372 times. https://doi.org/10.1038/s41587-019-0147-6

Simultaneous trimodal single-cell measurement of transcripts, epitopes, and chromatin accessibility using TEA-seq

Elliott Swanson, Cara Lord, Julian Reading, et al.. (2021). eLife. Cited 175 times. https://doi.org/10.7554/eLife.63632

Chromatin compaction under mixed salt conditions: Opposite effects of sodium and potassium ions on nucleosome array folding

Abdollah Allahverdi, Qinming Chen, N. Korolev, et al.. (2015). Scientific Reports. Cited 79 times. https://doi.org/10.1038/srep08512

Head injuries.

W. Darmody, J. Tintinalli. (1979). JACEP. https://doi.org/10.1016/s0361-1124(79)80156-2

Immunoglobulin allotypes and familial cutaneous malignant melanoma/dysplastic nevi. A family study.

R. B. Buchmann, S. Bale, M. Greene, et al.. (1988). Experimental and clinical immunogenetics.
NCPI Dataset Catalog
Feedback & Support
v0.9.0-d9e5747