Comprehensive Analysis of the Immunogenomics of Triple Negative Breast Cancer Brain Metastases from LCCC1419

Request Access

The Sequence Alignment/Map format and SAMtools

Heng Li, R. Handsaker, Alec Wysoker, et al.. (2009). Bioinformatics. Cited 54,792 times. https://doi.org/10.1093/bioinformatics/btp352

GSVA: gene set variation analysis for microarray and RNA-Seq data

Sonja Hänzelmann, R. Castelo, J. Guinney. (2013). BMC Bioinformatics. Cited 11,195 times. https://doi.org/10.1186/1471-2105-14-7

Salmon: fast and bias-aware quantification of transcript expression using dual-phase inference

Rob Patro, Geet Duggal, M. Love, et al.. (2017). Nature methods. Cited 8,162 times. https://doi.org/10.1038/nmeth.4197

Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2

Michael I. Love, Wolfgang Huber, Simon Anders. (2014). Genome Biology. Cited 6,870 times. https://doi.org/10.1186/s13059-014-0550-8

Robust enumeration of cell subsets from tissue expression profiles

Aaron M. Newman, C. Liu, M. Green, et al.. (2015). Nature methods. Cited 4,788 times. https://doi.org/10.1038/nmeth.3337

Determining cell-type abundance and expression from bulk tissues with digital cytometry

Aaron M. Newman, C. Steen, C. Liu, et al.. (2019). Nature biotechnology. Cited 3,280 times. https://doi.org/10.1038/s41587-019-0114-2

GENCODE reference annotation for the human and mouse genomes

A. Frankish, M. Diekhans, Anne-Maud Ferreira, et al.. (2018). Nucleic Acids Research. Cited 2,646 times. https://doi.org/10.1093/nar/gky955

MiXCR: software for comprehensive adaptive immunity profiling

D. A. Bolotin, S. Poslavsky, Igor Mitrophanov, et al.. (2015). Nature Methods. Cited 1,465 times. https://doi.org/10.1038/nmeth.3364

NetMHCpan-4.0: Improved Peptide–MHC Class I Interaction Predictions Integrating Eluted Ligand and Peptide Binding Affinity Data

V. Jurtz, S. Paul, M. Andreatta, et al.. (2017). The Journal of Immunology. Cited 1,062 times. https://doi.org/10.4049/jimmunol.1700893

Comprehensive assessment of T-cell receptor beta-chain diversity in alphabeta T cells.

H. Robins, P. Campregher, S. Srivastava, et al.. (2009). Blood. Cited 1,049 times. https://doi.org/10.1182/blood-2009-04-217604

Gene Expression Signature of Fibroblast Serum Response Predicts Human Cancer Progression: Similarities between Tumors and Wounds

Howard Y. Chang, Julie B. Sneddon, Ash A. Alizadeh, et al.. (2004). PLoS Biology. Cited 973 times. https://doi.org/10.1371/journal.pbio.0020007

Using synthetic templates to design an unbiased multiplex PCR assay

C. Carlson, R. Emerson, A. Sherwood, et al.. (2013). Nature Communications. Cited 555 times. https://doi.org/10.1038/ncomms3680

heatmaply: an R package for creating interactive cluster heatmaps for online publishing

Tal Galili, Alan O'Callaghan, J. Sidi, et al.. (2017). Bioinformatics. Cited 490 times. https://doi.org/10.1093/bioinformatics/btx657

Systematic identification of personal tumor-specific neoantigens in chronic lymphocytic leukemia.

M. Rajasagi, S. Shukla, E. Fritsch, et al.. (2014). Blood. Cited 315 times. https://doi.org/10.1182/blood-2014-04-567933

Comparison of RNA-Seq by poly (A) capture, ribosomal RNA depletion, and DNA microarray for expression profiling

Wei Zhao, Xiaping He, K. Hoadley, et al.. (2014). BMC Genomics. Cited 294 times. https://doi.org/10.1186/1471-2164-15-419

Inference of high resolution HLA types using genome-wide RNA or DNA sequencing reads

Yu Bai, M. Ni, Blerta Cooper, et al.. (2014). BMC Genomics. Cited 105 times. https://doi.org/10.1186/1471-2164-15-325

Assembly-based inference of B-cell receptor repertoires from short read RNA sequencing data with V’DJer

Lisle E. Mose, Sara R. Selitsky, L. Bixby, et al.. (2016). Bioinformatics. Cited 61 times. https://doi.org/10.1093/bioinformatics/btw526

Breast cancer PAM50 signature: correlation and concordance between RNA-Seq and digital multiplexed gene expression technologies in a triple negative breast cancer series

A. Picornell, I. Echavarría, E. Alvarez, et al.. (2019). BMC Genomics. Cited 44 times. https://doi.org/10.1186/s12864-019-5849-0

Improved T-cell Receptor Diversity Estimates Associate with Survival and Response to Anti–PD-1 Therapy

Dante S. Bortone, M. Woodcock, J. Parker, et al.. (2020). Cancer Immunology Research. Cited 17 times. https://doi.org/10.1158/2326-6066.CIR-20-0398
NCPI Dataset Catalog
Feedback & Support
v0.9.0-d9e5747