limma powers differential expression analyses for RNA-sequencing and microarray studies
Matthew E. Ritchie, B. Phipson, Diabetes-Ling Wu, et al.. (2015). Nucleic Acids Research. Cited 32,121 times. https://doi.org/10.1093/nar/gkv007clusterProfiler: an R Package for Comparing Biological Themes Among Gene Clusters
Guangchuang Yu, Li-Gen Wang, Yanyan Han, et al.. (2012). OMICS: A Journal of Integrative Biology. Cited 27,402 times. https://doi.org/10.1089/omi.2011.0118GSVA: gene set variation analysis for microarray and RNA-Seq data
Sonja Hänzelmann, R. Castelo, J. Guinney. (2013). BMC Bioinformatics. Cited 11,195 times. https://doi.org/10.1186/1471-2105-14-7A framework for variation discovery and genotyping using next-generation DNA sequencing data
M. DePristo, E. Banks, R. Poplin, et al.. (2011). Nature genetics. Cited 10,990 times. https://doi.org/10.1038/ng.806A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff
Pablo Cingolani, A. Platts, Le Lily Wang, et al.. (2012). Fly. Cited 9,823 times. https://doi.org/10.4161/fly.19695Signatures of mutational processes in human cancer
Ludmil B. Alexandrov, S. Nik-Zainal, D. Wedge, et al.. (2013). Nature. Cited 8,903 times. https://doi.org/10.1038/nature12477Pembrolizumab versus Chemotherapy for PD-L1-Positive Non-Small-Cell Lung Cancer.
M. Reck, D. Rodríguez-Abreu, A. Robinson, et al.. (2016). The New England journal of medicine. Cited 8,357 times. https://doi.org/10.1056/NEJMOA1606774Mutational landscape determines sensitivity to PD-1 blockade in non–small cell lung cancer
N. Rizvi, M. Hellmann, A. Snyder, et al.. (2015). Science. Cited 6,463 times. https://doi.org/10.1126/science.aaa1348Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade
Dung T Le, Dung T Le, Jennifer N Durham, et al.. (2017). Science. Cited 5,637 times. https://doi.org/10.1126/science.aan6733Pembrolizumab plus Chemotherapy in Metastatic Non–Small‐Cell Lung Cancer
L. Gandhi, D. Rodríguez-Abreu, S. Gadgeel, et al.. (2018). The New England Journal of Medicine. Cited 5,192 times. https://doi.org/10.1056/NEJMoa1801005Robust enumeration of cell subsets from tissue expression profiles
Aaron M. Newman, C. Liu, M. Green, et al.. (2015). Nature methods. Cited 4,788 times. https://doi.org/10.1038/nmeth.3337Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial
J. Rosenberg, J. Hoffman-Censits, T. Powles, et al.. (2016). The Lancet. Cited 3,249 times. https://doi.org/10.1016/S0140-6736(16)00561-4Mutations Associated with Acquired Resistance to PD-1 Blockade in Melanoma.
J. Zaretsky, A. García-Díaz, D. Shin, et al.. (2016). The New England journal of medicine. Cited 2,644 times. https://doi.org/10.1056/NEJMoa1604958The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads
Yang Liao, G. Smyth, Wei Shi. (2018). Nucleic Acids Research. Cited 2,327 times. https://doi.org/10.1101/377762Radiation and Dual Checkpoint Blockade Activates Non-Redundant Immune Mechanisms in Cancer
Christina Twyman-Saint Victor, A. Rech, A. Maity, et al.. (2015). Nature. Cited 2,224 times. https://doi.org/10.1038/nature14292Interferon-gamma: an overview of signals, mechanisms and functions.
K. Schroder, P. Hertzog, T. Ravasi, et al.. (2004). Journal of leukocyte biology. Cited 1,875 times.The Immune Epitope Database (IEDB): 2018 update
R. Vita, Swapnil Mahajan, James A. Overton, et al.. (2018). Nucleic Acids Research. Cited 1,858 times. https://doi.org/10.1093/nar/gky1006Subsets of exhausted CD8+ T cells differentially mediate tumor control and respond to checkpoint blockade
Brian C. Miller, Debattama R. Sen, Debattama R. Sen, et al.. (2019). Nature Immunology. Cited 1,588 times. https://doi.org/10.1038/s41590-019-0312-6COSMIC: the Catalogue Of Somatic Mutations In Cancer
J. Tate, S. Bamford, Harry C Jubb, et al.. (2018). Nucleic Acids Research. Cited 1,576 times. https://doi.org/10.1093/nar/gky1015Defining T Cell States Associated with Response to Checkpoint Immunotherapy in Melanoma
Moshe Sade-Feldman, Keren Yizhak, Stacey L. Bjorgaard, et al.. (2018). Cell. Cited 1,573 times. https://doi.org/10.1016/j.cell.2018.10.038Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints
S. Koyama, Esra A. Akbay, Yvonne Y. Li, et al.. (2016). Nature Communications. Cited 1,364 times. https://doi.org/10.1038/ncomms10501STK11/LKB1 Mutations and PD-1 Inhibitor Resistance in KRAS-Mutant Lung Adenocarcinoma.
F. Skoulidis, M. Goldberg, D. Greenawalt, et al.. (2018). Cancer discovery. Cited 1,236 times. https://doi.org/10.1158/2159-8290.CD-18-0099Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas
Joshua D. Campbell, A. Alexandrov, Jaegil Kim, et al.. (2016). Nature genetics. Cited 1,058 times. https://doi.org/10.1038/ng.3564Tumor Interferon Signaling Regulates a Multigenic Resistance Program to Immune Checkpoint Blockade
Joseph L. Benci, Bihui Xu, Yu Qiu, et al.. (2016). Cell. Cited 967 times. https://doi.org/10.1016/j.cell.2016.11.022FACETS: allele-specific copy number and clonal heterogeneity analysis tool for high-throughput DNA sequencing
R. Shen, V. Seshan. (2016). Nucleic Acids Research. Cited 957 times. https://doi.org/10.1093/nar/gkw520PyClone: statistical inference of clonal population structure in cancer
Andrew Roth, J. Khattra, Damian Boon Siew Yap, et al.. (2014). Nature Methods. Cited 917 times. https://doi.org/10.1038/nmeth.2883Cooperation of Tim-3 and PD-1 in CD8 T-cell exhaustion during chronic viral infection
H. Jin, A. Anderson, W. Tan, et al.. (2010). Proceedings of the National Academy of Sciences. Cited 867 times. https://doi.org/10.1073/pnas.1009731107Resistance to checkpoint blockade therapy through inactivation of antigen presentation
Moshe Sade-Feldman, Yunxin J. Jiao, Jonathan H. Chen, et al.. (2017). Nature Communications. Cited 818 times. https://doi.org/10.1038/s41467-017-01062-wNetMHC-3.0: accurate web accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8–11
C. Lundegaard, K. Lamberth, M. Harndahl, et al.. (2008). Nucleic Acids Research. Cited 807 times. https://doi.org/10.1093/nar/gkn202Benchmark and integration of resources for the estimation of human transcription factor activities
Luz Garcia-Alonso, Mahmoud M. Ibrahim, D. Turei, et al.. (2018). Genome Research. Cited 779 times. https://doi.org/10.1101/gr.240663.118Evolution of Neoantigen Landscape during Immune Checkpoint Blockade in Non-Small Cell Lung Cancer.
V. Anagnostou, Kellie N. Smith, P. Forde, et al.. (2017). Cancer discovery. Cited 741 times. https://doi.org/10.1158/2159-8290.CD-16-0828Impaired HLA Class I Antigen Processing and Presentation as a Mechanism of Acquired Resistance to Immune Checkpoint Inhibitors in Lung Cancer.
S. Gettinger, Jungmin Choi, K. Hastings, et al.. (2017). Cancer discovery. Cited 611 times. https://doi.org/10.1158/2159-8290.CD-17-0593Tumor immune microenvironment characterization in clear cell renal cell carcinoma identifies prognostic and immunotherapeutically relevant messenger RNA signatures
Y. Şenbabaoğlu, Ron S. Gejman, A. Winer, et al.. (2016). Genome Biology. Cited 586 times. https://doi.org/10.1186/s13059-016-1092-zA neoantigen fitness model predicts tumour response to checkpoint blockade immunotherapy
M. Łuksza, N. Riaz, V. Makarov, et al.. (2017). Nature. Cited 573 times. https://doi.org/10.1038/nature24473Nivolumab with or without ipilimumab treatment for metastatic sarcoma (Alliance A091401): two open-label, non-comparative, randomised, phase 2 trials.
S. D’Angelo, M. Mahoney, B. V. Van Tine, et al.. (2018). The Lancet. Oncology. Cited 564 times. https://doi.org/10.1016/S1470-2045(18)30006-8Proliferating Transitory T Cells with an Effector-like Transcriptional Signature Emerge from PD-1+ Stem-like CD8+ T Cells during Chronic Infection.
W. Hudson, Julia Gensheimer, M. Hashimoto, et al.. (2019). Immunity. Cited 523 times. https://doi.org/10.1016/j.immuni.2019.11.002Durvalumab With or Without Tremelimumab vs Standard Chemotherapy in First-line Treatment of Metastatic Non–Small Cell Lung Cancer
N. Rizvi, B. Cho, N. Reinmuth, et al.. (2020). JAMA Oncology. Cited 521 times. https://doi.org/10.1001/jamaoncol.2020.0237Neoantigen landscape dynamics during human melanoma–T cell interactions
E. Verdegaal, N. Miranda, Marten Visser, et al.. (2016). Nature. Cited 430 times. https://doi.org/10.1038/nature18945Loss of PTEN Is Associated with Resistance to Anti‐PD‐1 Checkpoint Blockade Therapy in Metastatic Uterine Leiomyosarcoma
S. George, Diana Miao, G. Demetri, et al.. (2017). Immunity. Cited 423 times. https://doi.org/10.1016/j.immuni.2017.02.001Opposing Functions of Interferon Coordinate Adaptive and Innate Immune Responses to Cancer Immune Checkpoint Blockade
Joseph L. Benci, Lexus Johnson, R. Choa, et al.. (2019). Cell. Cited 392 times. https://doi.org/10.1016/j.cell.2019.07.019Tumor-infiltrating lymphocyte treatment for anti-PD-1-resistant metastatic lung cancer: a phase 1 trial
B. Creelan, chao wang, J. Teer, et al.. (2021). Nature Medicine. Cited 321 times. https://doi.org/10.1038/s41591-021-01462-yTCR-engineered T cells targeting E7 for patients with metastatic HPV-associated epithelial cancers
N. Nagarsheth, S. Norberg, Andrew Sinkoe, et al.. (2021). Nature Medicine. Cited 262 times. https://doi.org/10.1038/s41591-020-01225-1Conserved Interferon-γ Signaling Drives Clinical Response to Immune Checkpoint Blockade Therapy in Melanoma.
C. Grasso, C. Grasso, J. Tsoi, et al.. (2020). Cancer cell. Cited 243 times. https://doi.org/10.1016/j.ccell.2020.08.005Targeting immune checkpoints potentiates immunoediting and changes the dynamics of tumor evolution
M. Efremova, D. Rieder, V. Klepsch, et al.. (2018). Nature Communications. Cited 243 times. https://doi.org/10.1038/s41467-017-02424-0Lifileucel, a Tumor-Infiltrating Lymphocyte Therapy, in Metastatic Melanoma
A. Sarnaik, O. Hamid, N. Khushalani, et al.. (2021). Journal of Clinical Oncology. Cited 242 times. https://doi.org/10.1200/JCO.21.00612PhyloWGS: Reconstructing subclonal composition and evolution from whole-genome sequencing of tumors
A. Deshwar, Shankar Vembu, C. Yung, et al.. (2015). Genome Biology. Cited 210 times. https://doi.org/10.1186/s13059-015-0602-8APOBEC3B and APOBEC mutational signature as potential predictive markers for immunotherapy response in non-small cell lung cancer
Shixiang Wang, Mingming Jia, Zaoke He, et al.. (2018). Oncogene. Cited 209 times. https://doi.org/10.1038/s41388-018-0245-9T-Cell Receptor Gene Therapy for Human Papillomavirus–Associated Epithelial Cancers: A First-in-Human, Phase I/II Study
S. Doran, S. Stevanović, S. Adhikary, et al.. (2019). Journal of Clinical Oncology. Cited 178 times. https://doi.org/10.1200/JCO.18.02424Comparison of the molecular and cellular phenotypes of common mouse syngeneic models with human tumors
Wenyan Zhong, Jeremy S. Myers, F. Wang, et al.. (2020). BMC Genomics. Cited 136 times. https://doi.org/10.1186/s12864-019-6344-3Unraveling tumor–immune heterogeneity in advanced ovarian cancer uncovers immunogenic effect of chemotherapy
A. Jiménez-Sánchez, P. Cybulska, K. Mager, et al.. (2020). Nature Genetics. Cited 133 times. https://doi.org/10.1038/s41588-020-0630-5Clinical Features and Management of Acquired Resistance to PD‐1 Axis Inhibitors in 26 Patients With Advanced Non–Small Cell Lung Cancer
S. Gettinger, A. Wurtz, S. Goldberg, et al.. (2018). Journal of Thoracic Oncology. Cited 106 times. https://doi.org/10.1016/j.jtho.2018.03.008Uncovering pseudotemporal trajectories with covariates from single cell and bulk expression data
Kieran R. Campbell, C. Yau. (2018). Nature Communications. Cited 106 times. https://doi.org/10.1038/s41467-018-04696-6Lineage tracing reveals clonal progenitors and long-term persistence of tumor-specific T cells during immune checkpoint blockade.
J. Pai, M. Hellmann, J. Sauter, et al.. (2023). Cancer cell. Cited 99 times. https://doi.org/10.1016/j.ccell.2023.03.009Uncoupling interferon signaling and antigen presentation to overcome immunotherapy resistance due to JAK1 loss in melanoma
A. Kalbasi, Mito Tariveranmoshabad, K. Hakimi, et al.. (2020). Science Translational Medicine. Cited 89 times. https://doi.org/10.1126/scitranslmed.abb0152Clinical definition of acquired resistance to immunotherapy in patients with metastatic non-small cell lung cancer.
A. Schoenfeld, S. Antonia, M. Awad, et al.. (2021). Annals of oncology : official journal of the European Society for Medical Oncology. Cited 78 times. https://doi.org/10.1016/j.annonc.2021.08.2151Improved prognosis and increased tumor infiltrating lymphocytes in small cell lung cancer patients with neurologic paraneoplastic syndromes.
W. Iams, E. Shiuan, C. Meador, et al.. (2019). Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer. Cited 51 times. https://doi.org/10.1016/j.jtho.2019.05.042Melanoma Evolves Complete Immunotherapy Resistance through the Acquisition of a Hypermetabolic Phenotype
A. Jaiswal, Arthur J Liu, Shivanand Pudakalakatti, et al.. (2020). Cancer Immunology Research. Cited 49 times. https://doi.org/10.1158/2326-6066.CIR-19-0005Checkpoint inhibitors in melanoma and early phase development in solid tumors: what’s the future?
P. Ascierto, G. McArthur. (2017). Journal of Translational Medicine. Cited 38 times. https://doi.org/10.1186/s12967-017-1278-5Non-small cell to small cell lung cancer on PD-1 inhibitors: two cases on potential histologic transformation
Nadine H Abdallah, M. Nagasaka, E. Abdulfatah, et al.. (2018). Lung Cancer: Targets and Therapy. Cited 36 times. https://doi.org/10.2147/LCTT.S173724Exceptional responders with invasive mucinous adenocarcinomas: a phase 2 trial of bortezomib in patients with KRAS G12D-mutant lung cancers
A. Drilon, A. Schoenfeld, K. Arbour, et al.. (2019). Cold Spring Harbor Molecular Case Studies. Cited 29 times. https://doi.org/10.1101/mcs.a003665