The Nephrotic Syndrome Study Network (NEPTUNE)

Request Access

Tissue transcriptome-driven identification of epidermal growth factor as a chronic kidney disease biomarker

W. Ju, V. Nair, Shahaan Smith, et al.. (2015). Science Translational Medicine. Cited 381 times. https://doi.org/10.1126/scitranslmed.aac7071

Design of the Nephrotic Syndrome Study Network (NEPTUNE) to evaluate primary glomerular nephropathy by a multi-disciplinary approach

C. Gadegbeku, D. Gipson, L. Holzman, et al.. (2012). Kidney international. Cited 319 times. https://doi.org/10.1038/ki.2012.428

Discovery of Autoantibodies Targeting Nephrin in Minimal Change Disease Supports a Novel Autoimmune Etiology

A. Watts, Keith H. Keller, G. Lerner, et al.. (2021). JASN. Cited 263 times. https://doi.org/10.1681/ASN.2021060794

An eQTL landscape of kidney tissue in human nephrotic syndrome

C. Gillies, Rosemary K B Putler, R. Menon, et al.. (2018). bioRxiv. Cited 164 times. https://doi.org/10.1101/281162

Development and evaluation of deep learning–based segmentation of histologic structures in the kidney cortex with multiple histologic stains

Catherine P. Jayapandian, Yijiang Chen, A. Janowczyk, et al.. (2020). Kidney international. Cited 160 times. https://doi.org/10.1016/j.kint.2020.07.044

Metabolic pathways and immunometabolism in rare kidney diseases

P. Grayson, S. Eddy, Jaclyn N. Taroni, et al.. (2018). Annals of the Rheumatic Diseases. Cited 154 times. https://doi.org/10.1136/annrheumdis-2017-212935

Local TNF causes NFATc1-dependent cholesterol-mediated podocyte injury.

C. Pedigo, G. Ducasa, Farah Leclercq, et al.. (2016). The Journal of clinical investigation. Cited 148 times. https://doi.org/10.1172/JCI85939

Urine podocyte mRNAs, proteinuria, and progression in human glomerular diseases.

Larysa T. Wickman, F. Afshinnia, Su-qing Wang, et al.. (2013). Journal of the American Society of Nephrology : JASN. Cited 130 times. https://doi.org/10.1681/ASN.2013020173

Single cell transcriptomics identifies focal segmental glomerulosclerosis remission endothelial biomarker.

R. Menon, E. Otto, P. Hoover, et al.. (2020). JCI insight. Cited 122 times. https://doi.org/10.1172/jci.insight.133267

A reassessment of soluble urokinase-type plasminogen activator receptor in glomerular disease

Joann M. Spinale, L. Mariani, S. Kapoor, et al.. (2014). Kidney international. Cited 120 times. https://doi.org/10.1038/ki.2014.346

Integrative Genomics Identifies Novel Associations with APOL1 Risk Genotypes in Black NEPTUNE Subjects.

M. Sampson, Catherine C. Robertson, S. Martini, et al.. (2016). Journal of the American Society of Nephrology : JASN. Cited 115 times. https://doi.org/10.1681/ASN.2014111131

The Role of Proprotein Convertase Subtilisin/Kexin Type 9 in Nephrotic Syndrome-Associated Hypercholesterolemia

Mary E. Haas, Amy E. Levenson, Xiaowei Sun, et al.. (2016). Circulation. Cited 107 times. https://doi.org/10.1161/CIRCULATIONAHA.115.020912

Digital pathology evaluation in the multicenter Nephrotic Syndrome Study Network (NEPTUNE).

L. Barisoni, Cynthia C. Nast, J. C. Jennette, et al.. (2013). Clinical journal of the American Society of Nephrology : CJASN. Cited 105 times. https://doi.org/10.2215/CJN.08370812

Interstitial fibrosis scored on whole-slide digital imaging of kidney biopsies is a predictor of outcome in proteinuric glomerulopathies

L. Mariani, S. Martini, L. Barisoni, et al.. (2018). Nephrology Dialysis Transplantation. Cited 104 times. https://doi.org/10.1093/ndt/gfw443

Subfractionation, characterization and in-depth proteomic analysis of glomerular membrane vesicles in human urine

M. Hogan, K. L. Johnson, Roman M. Ženka, et al.. (2013). Kidney international. Cited 102 times. https://doi.org/10.1038/ki.2013.422

Organoid single cell profiling identifies a transcriptional signature of glomerular disease.

J. Harder, R. Menon, E. Otto, et al.. (2019). JCI insight. Cited 78 times. https://doi.org/10.1172/jci.insight.122697

JAK-STAT signaling is activated in the kidney and peripheral blood cells of patients with focal segmental glomerulosclerosis.

Jianling Tao, L. Mariani, S. Eddy, et al.. (2018). Kidney international. Cited 78 times. https://doi.org/10.1016/j.kint.2018.05.022

Transethnic, Genome-Wide Analysis Reveals Immune-Related Risk Alleles and Phenotypic Correlates in Pediatric Steroid-Sensitive Nephrotic Syndrome.

H. Dębiec, C. Dossier, E. Letouzé, et al.. (2018). Journal of the American Society of Nephrology : JASN. Cited 74 times. https://doi.org/10.1681/ASN.2017111185

APOL1-associated glomerular disease among African-American children: a collaboration of the Chronic Kidney Disease in Children (CKiD) and Nephrotic Syndrome Study Network (NEPTUNE) cohorts

D. Ng, Catherine C. Robertson, Robert P Woroniecki, et al.. (2016). Nephrology Dialysis Transplantation. Cited 74 times. https://doi.org/10.1093/ndt/gfw061

The relatively poor correlation between random and 24-hour urine protein excretion in patients with biopsy-proven glomerular diseases.

M. Hogan, H. Reich, Peter J. Nelson, et al.. (2016). Kidney international. Cited 66 times. https://doi.org/10.1016/j.kint.2016.06.020

An Outcomes-Based Definition of Proteinuria Remission in Focal Segmental Glomerulosclerosis.

J. Troost, H. Trachtman, P. Nachman, et al.. (2017). Clinical journal of the American Society of Nephrology : CJASN. Cited 64 times. https://doi.org/10.2215/CJN.04780517

Precision nephrology identified tumor necrosis factor activation variability in minimal change disease and focal segmental glomerulosclerosis.

L. Mariani, S. Eddy, Fadhl M Alakwaa, et al.. (2022). Kidney international. Cited 61 times. https://doi.org/10.1016/j.kint.2022.10.023

Complete Remission in the Nephrotic Syndrome Study Network.

D. Gipson, J. Troost, R. Lafayette, et al.. (2016). Clinical journal of the American Society of Nephrology : CJASN. Cited 61 times. https://doi.org/10.2215/CJN.02560315

Digital pathology imaging as a novel platform for standardization and globalization of quantitative nephropathology

L. Barisoni, C. Gimpel, R. Kain, et al.. (2017). Clinical Kidney Journal. Cited 58 times. https://doi.org/10.1093/ckj/sfw129

Reproducibility of the NEPTUNE descriptor-based scoring system on whole-slide images and histologic and ultrastructural digital images

L. Barisoni, J. Troost, C. Nast, et al.. (2016). Modern Pathology. Cited 57 times. https://doi.org/10.1038/modpathol.2016.58

Uncovering genetic mechanisms of hypertension through multi-omic analysis of the kidney

J. Eales, Xiao Jiang, Xiaoguang Xu, et al.. (2021). Nature Genetics. Cited 56 times. https://doi.org/10.1038/s41588-021-00835-w

Podometrics as a Potential Clinical Tool for Glomerular Disease Management.

M. Kikuchi, Larysa T. Wickman, J. Hodgin, et al.. (2015). Seminars in nephrology. Cited 51 times. https://doi.org/10.1016/j.semnephrol.2015.04.004

Assessment of a computerized quantitative quality control tool for whole slide images of kidney biopsies

Yijiang Chen, J. Zee, Abigail R Smith, et al.. (2020). The Journal of Pathology. Cited 50 times. https://doi.org/10.1002/path.5590

Common risk variants in NPHS1 and TNFSF15 are associated with childhood steroid-sensitive nephrotic syndrome.

Xiaoyuan Jia, Tomohiko Yamamura, R. Gbadegesin, et al.. (2020). Kidney international. Cited 50 times. https://doi.org/10.1016/j.kint.2020.05.029

Global glomerulosclerosis with nephrotic syndrome; the clinical importance of age adjustment.

Musab S. Hommos, C. Zeng, Zhihong Liu, et al.. (2017). Kidney international. Cited 50 times. https://doi.org/10.1016/j.kint.2017.09.028

Role of direct oral anticoagulants in patients with kidney disease.

V. Derebail, M. Rheault, B. Kerlin. (2019). Kidney international. Cited 47 times. https://doi.org/10.1016/j.kint.2019.11.027

Angiotensin II Upregulates Sodium-Glucose Co-Transporter2 (SGLT2) Expression and SGLT2 Inhibitor Attenuates Ang II-Induced Hypertensive Renal Injury in Mice.

Kana N. Miyata, Chao-Sheng Lo, Shui-Ling Zhao, et al.. (2020). Clinical science. Cited 45 times. https://doi.org/10.1042/CS20210094

Urine Single-Cell RNA Sequencing in Focal Segmental Glomerulosclerosis Reveals Inflammatory Signatures

Khun Zaw Latt, J. Heymann, Joseph Jessee, et al.. (2021). Kidney International Reports. Cited 43 times. https://doi.org/10.1016/j.ekir.2021.11.005

Using Population Genetics to Interrogate the Monogenic Nephrotic Syndrome Diagnosis in a Case Cohort.

M. Sampson, C. Gillies, Catherine C. Robertson, et al.. (2016). Journal of the American Society of Nephrology : JASN. Cited 42 times. https://doi.org/10.1681/ASN.2015050504

JAK-STAT Activity in Peripheral Blood Cells and Kidney Tissue in IgA Nephropathy.

Jianling Tao, L. Mariani, S. Eddy, et al.. (2020). Clinical journal of the American Society of Nephrology : CJASN. Cited 37 times. https://doi.org/10.2215/CJN.11010919

Elevated urinary CRELD2 is associated with endoplasmic reticulum stress-mediated kidney disease.

Yeawon Kim, Sun-Ji Park, Scott R. Manson, et al.. (2017). JCI insight. Cited 36 times. https://doi.org/10.1172/jci.insight.92896

Natural Antibody and Complement Activation Characterize Patients with Idiopathic Nephrotic Syndrome.

H. Trachtman, J. Laskowski, Cameron Lee, et al.. (2021). American journal of physiology. Renal physiology. Cited 35 times. https://doi.org/10.1152/ajprenal.00041.2021

Ultrastructural Characterization of Proteinuric Patients Predicts Clinical Outcomes.

Virginie Royal, J. Zee, Qian Liu, et al.. (2020). Journal of the American Society of Nephrology : JASN. Cited 35 times. https://doi.org/10.1681/ASN.2019080825

Glomerular diseases: emerging tests and therapies for IgA nephropathy.

P. Canetta, Krzysztof Kiryluk, G. Appel. (2014). Clinical journal of the American Society of Nephrology : CJASN. Cited 33 times. https://doi.org/10.2215/CJN.07260713

Kidney Biopsy Features Most Predictive of Clinical Outcomes in the Spectrum of Minimal Change Disease and Focal Segmental Glomerulosclerosis

J. Zee, Qian Liu, Abigail R Smith, et al.. (2022). JASN. Cited 32 times. https://doi.org/10.1681/ASN.2021101396

The Application of Digital Pathology to Improve Accuracy in Glomerular Enumeration in Renal Biopsies

A. Rosenberg, M. Palmer, L. Merlino, et al.. (2016). PLoS ONE. Cited 32 times. https://doi.org/10.1371/journal.pone.0156441

Lack of Serologic Evidence to Link IgA Nephropathy with Celiac Disease or Immune Reactivity to Gluten

S. Moeller, P. Canetta, Annette K. Taylor, et al.. (2014). PLoS ONE. Cited 32 times. https://doi.org/10.1371/journal.pone.0094677

Proteomic Analysis Identifies Distinct Glomerular Extracellular Matrix in Collapsing Focal Segmental Glomerulosclerosis.

M. Merchant, M. Barati, Dawn J. Caster, et al.. (2020). Journal of the American Society of Nephrology : JASN. Cited 30 times. https://doi.org/10.1681/ASN.2019070696

Defining nephrotic syndrome from an integrative genomics perspective

M. Sampson, J. Hodgin, M. Kretzler. (2014). Pediatric Nephrology. Cited 29 times. https://doi.org/10.1007/s00467-014-2857-9

The Clinical Application of Urine Soluble CD163 in ANCA-Associated Vasculitis

S. Moran, Jennifer Scott, M. Clarkson, et al.. (2021). JASN. Cited 28 times. https://doi.org/10.1681/ASN.2021030382

Digital pathology in nephrology clinical trials, research, and pathology practice

L. Barisoni, J. Hodgin. (2017). Current Opinion in Nephrology and Hypertension. Cited 26 times. https://doi.org/10.1097/MNH.0000000000000360

Urinary CD80 Discriminates Among Glomerular Disease Types and Reflects Disease Activity

A. G. Guerrico, J. Lieske, G. Klee, et al.. (2020). Kidney International Reports. Cited 25 times. https://doi.org/10.1016/j.ekir.2020.08.001

Renal SGLT mRNA Expression in Human Health and Disease: A Study in Two Cohorts.

Vikas Srinivasan Sridhar, J. P. Ambinathan, M. Kretzler, et al.. (2019). American journal of physiology. Renal physiology. Cited 25 times. https://doi.org/10.1152/ajprenal.00370.2019

Morphology in the Digital Age: Integrating High-Resolution Description of Structural Alterations With Phenotypes and Genotypes.

C. Nast, K. Lemley, J. Hodgin, et al.. (2015). Seminars in nephrology. Cited 25 times. https://doi.org/10.1016/j.semnephrol.2015.04.006

Recurrent venous thromboembolism in primary membranous nephropathy despite direct Xa inhibitor therapy

M. Reynolds, P. Nachman, M. Mooberry, et al.. (2018). Journal of Nephrology. Cited 24 times. https://doi.org/10.1007/s40620-018-0552-9

Using All Longitudinal Data to Define Time to Specified Percentages of Estimated GFR Decline: A Simulation Study.

J. Zee, Sarah A. Mansfield, L. Mariani, et al.. (2019). American journal of kidney diseases : the official journal of the National Kidney Foundation. Cited 24 times. https://doi.org/10.1053/j.ajkd.2018.07.009

Molecular Characterization of Membranous Nephropathy

Rachel S. G. Sealfon, L. Mariani, C. Avila-Casado, et al.. (2022). JASN. Cited 23 times. https://doi.org/10.1681/ASN.2021060784

Incorporating longitudinal biomarkers for dynamic risk prediction in the era of big data: A pseudo‐observation approach

Lili Zhao, S. Murray, L. Mariani, et al.. (2020). Statistics in Medicine. Cited 23 times. https://doi.org/10.1002/sim.8687

Reproducibility and Feasibility of Strategies for Morphologic Assessment of Renal Biopsies Using the Nephrotic Syndrome Study Network Digital Pathology Scoring System.

J. Zee, J. Hodgin, L. Mariani, et al.. (2018). Archives of pathology & laboratory medicine. Cited 23 times. https://doi.org/10.5858/arpa.2017-0181-OA

Nephrotic syndrome disease activity is proportional to its associated hypercoagulopathy.

A. Waller, J. Troost, S. Parikh, et al.. (2021). Thrombosis research. Cited 22 times. https://doi.org/10.1016/j.thromres.2021.02.007

Identification of glomerular and podocyte-specific genes and pathways activated by sera of patients with focal segmental glomerulosclerosis

Lilian Otalora, Efren Chavez, D. Watford, et al.. (2019). PLoS ONE. Cited 22 times. https://doi.org/10.1371/journal.pone.0222948

Quantification of Glomerular Structural Lesions: Associations With Clinical Outcomes and Transcriptomic Profiles in Nephrotic Syndrome.

J. Hodgin, L. Mariani, J. Zee, et al.. (2021). American journal of kidney diseases : the official journal of the National Kidney Foundation. Cited 21 times. https://doi.org/10.1053/j.ajkd.2021.10.004

Renal matrix Gla protein expression increases progressively with CKD and predicts renal outcome.

Kana N. Miyata, C. Nast, T. Dai, et al.. (2018). Experimental and molecular pathology. Cited 21 times. https://doi.org/10.1016/j.yexmp.2018.07.001

Learning to live with nephrotic syndrome: experiences of adult patients and parents of children with nephrotic syndrome.

H. Beanlands, M. Maione, Caroline Poulton, et al.. (2017). Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association. Cited 21 times. https://doi.org/10.1093/ndt/gfw344

AMPK mediates regulation of glomerular volume and podocyte survival

K. Banu, Q. Lin, J. Basgen, et al.. (2021). JCI Insight. Cited 20 times. https://doi.org/10.1172/jci.insight.150004

The longitudinal relationship between patient-reported outcomes and clinical characteristics among patients with focal segmental glomerulosclerosis in the Nephrotic Syndrome Study Network

J. Troost, Anne Waldo, N. Carlozzi, et al.. (2019). Clinical Kidney Journal. Cited 20 times. https://doi.org/10.1093/ckj/sfz092

Tyro3 is a podocyte protective factor in glomerular disease.

F. Zhong, Zhaohong Chen, Liwen Zhang, et al.. (2018). JCI insight. Cited 20 times. https://doi.org/10.1172/jci.insight.123482

Blood Pressure and Visit-to-Visit Blood Pressure Variability Among Individuals With Primary Proteinuric Glomerulopathies

C. Sethna, K. Meyers, L. Mariani, et al.. (2017). Hypertension. Cited 20 times. https://doi.org/10.1161/HYPERTENSIONAHA.117.09475

Morphometry Predicts Early GFR Change in Primary Proteinuric Glomerulopathies: A Longitudinal Cohort Study Using Generalized Estimating Equations

K. Lemley, S. Bagnasco, C. Nast, et al.. (2016). PLoS ONE. Cited 18 times. https://doi.org/10.1371/journal.pone.0157148

Association of Obesity with Cardiovascular Risk Factors and Kidney Disease Outcomes in Primary Proteinuric Glomerulopathies

Paras P. Shah, T. Brady, K. Meyers, et al.. (2021). Nephron. Cited 17 times. https://doi.org/10.1159/000513869

Using PROMIS® to Create Clinically Meaningful Profiles of Nephrotic Syndrome Patients

J. Troost, D. Gipson, N. Carlozzi, et al.. (2019). Health Psychology. Cited 17 times. https://doi.org/10.1037/hea0000679

A glomerular transcriptomic landscape of apolipoprotein L1 in Black patients with focal segmental glomerulosclerosis.

M. McNulty, D. Fermin, F. Eichinger, et al.. (2021). Kidney international. Cited 16 times. https://doi.org/10.1016/j.kint.2021.10.041

Follistatin-Like-1 (FSTL1) Is a Fibroblast-Derived Growth Factor That Contributes to Progression of Chronic Kidney Disease

Nicholas A Maksimowski, Xuewen Song, E. Bae, et al.. (2021). International Journal of Molecular Sciences. Cited 16 times. https://doi.org/10.3390/ijms22179513

ADAR regulates APOL1 via A-to-I RNA editing by inhibition of MDA5 activation in a paradoxical biological circuit

Cristian V Riella, M. McNulty, Guilherme T. Ribas, et al.. (2022). Proceedings of the National Academy of Sciences of the United States of America. Cited 15 times. https://doi.org/10.1073/pnas.2210150119

Strategy and rationale for urine collection protocols employed in the NEPTUNE study

M. Hogan, J. Lieske, Chrysta Lienczewski, et al.. (2015). BMC Nephrology. Cited 15 times. https://doi.org/10.1186/s12882-015-0185-3

Urinary Epidermal Growth Factor as a Marker of Disease Progression in Children With Nephrotic Syndrome

D. Gipson, H. Trachtman, Anne Waldo, et al.. (2019). Kidney International Reports. Cited 14 times. https://doi.org/10.1016/j.ekir.2019.11.018

Plasma Zonulin Levels in Childhood Nephrotic Syndrome

H. Trachtman, D. Gipson, K. Lemley, et al.. (2019). Frontiers in Pediatrics. Cited 13 times. https://doi.org/10.3389/fped.2019.00197

Text Messaging for Disease Monitoring in Childhood Nephrotic Syndrome

Chia-shi Wang, J. Troost, L. Greenbaum, et al.. (2019). Kidney International Reports. Cited 12 times. https://doi.org/10.1016/j.ekir.2019.04.026

Dynamic treatment regimens in small n, sequential, multiple assignment, randomized trials: An application in focal segmental glomerulosclerosis.

Yan-Cheng Chao, H. Trachtman, D. Gipson, et al.. (2020). Contemporary clinical trials. Cited 11 times. https://doi.org/10.1016/j.cct.2020.105989

Identification of dicarbonyl and L-xylulose reductase as a therapeutic target in human chronic kidney disease.

P. Perco, W. Ju, Julia Kerschbaum, et al.. (2019). JCI insight. Cited 9 times. https://doi.org/10.1172/jci.insight.128120

Evaluating Mendelian nephrotic syndrome genes for evidence for risk alleles or oligogenicity that explain heritability

Brendan Crawford, C. Gillies, Catherine C. Robertson, et al.. (2017). Pediatric Nephrology. Cited 9 times. https://doi.org/10.1007/s00467-016-3513-3

Provider perspectives on treatment decision-making in nephrotic syndrome.

M. Hladunewich, H. Beanlands, Emily G Herreshoff, et al.. (2017). Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association. Cited 8 times. https://doi.org/10.1093/ndt/gfw309

Viral associations with kidney disease diagnosis and altered kidney metatranscriptome by kidney function.

Changjin Hong, Felix Eichinger, Mohamad G. Atta, et al.. (2022). Kidney international. Cited 7 times. https://doi.org/10.1016/j.kint.2022.11.001

Tobacco exposure in adults and children with proteinuric glomerulopathies: a NEPTUNE cohort study

Linda Wang, Bayle Smith-Salzberg, K. Meyers, et al.. (2023). BMC Nephrology. Cited 6 times. https://doi.org/10.1186/s12882-023-03073-w

Kidney Injury Molecule-1 and Periostin Urinary Excretion and Tissue Expression Levels and Association with Glomerular Disease Outcomes

Qiao-zhen Wu, J. Troost, T. Dai, et al.. (2021). Glomerular Diseases. Cited 6 times. https://doi.org/10.1159/000513166

Exploring the Role of Antithrombin in Nephrotic Syndrome–Associated Hypercoagulopathy: A Multi-Cohort Study and Meta-Analysis

E. Abdelghani, A. Waller, K. Wolfgang, et al.. (2023). Clinical Journal of the American Society of Nephrology. Cited 5 times. https://doi.org/10.2215/CJN.0000000000000047

Determinants of medication adherence in childhood nephrotic syndrome and associations of adherence with clinical outcomes

Chia-shi Wang, J. Troost, Yujie Wang, et al.. (2021). Pediatric Nephrology. Cited 5 times. https://doi.org/10.1007/s00467-021-05176-8

A Rare Autosomal Dominant Variant in Regulator of Calcineurin Type 1 (RCAN1) Gene Confers Enhanced Calcineurin Activity and May Cause FSGS

Brandon M. Lane, S. Murray, K. Benson, et al.. (2021). JASN. Cited 5 times. https://doi.org/10.1681/ASN.2020081234

Methods for Assessing Longitudinal Biomarkers of Time-to-Event Outcomes in CKD: A Simulation Study.

Qian Liu, Abigail R Smith, L. Mariani, et al.. (2019). Clinical journal of the American Society of Nephrology : CJASN. Cited 5 times. https://doi.org/10.2215/CJN.00450119

Assessment of Fibrinogen-like 2 (FGL2) in Human Chronic Kidney Disease through Transcriptomics Data Analysis

Sara Denicolò, V. Nair, Johannes Leierer, et al.. (2022). Biomolecules. Cited 4 times. https://doi.org/10.3390/biom13010089

T-cell receptor diversity in minimal change disease in the NEPTUNE study

Shiying Liu, William S Bush, K. Miskimen, et al.. (2022). Pediatric Nephrology. Cited 3 times. https://doi.org/10.1007/s00467-022-05696-x

APOL1 genotype-associated morphologic changes among patients with focal segmental glomerulosclerosis

J. Zee, M. McNulty, J. Hodgin, et al.. (2021). Pediatric Nephrology. Cited 3 times. https://doi.org/10.1007/s00467-021-04990-4

tarSVM: Improving the accuracy of variant calls derived from microfluidic PCR-based targeted next generation sequencing using a support vector machine

C. Gillies, E. Otto, V. Vega-Warner, et al.. (2016). BMC Bioinformatics. Cited 3 times. https://doi.org/10.1186/s12859-016-1108-4

Genes, Exomes, Genomes, Copy Number: What is Their Future in Pediatric Renal Disease

M. Sampson, H. Jüppner. (2013). Current Pediatrics Reports. Cited 1 times. https://doi.org/10.1007/s40124-012-0001-5
NCPI Dataset Catalog
Feedback & Support
v0.9.0-d9e5747